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1. INTRODUCTION

Let C denote the space of all continuous functions f on [0, 1] which
satisfy /(0) = /(1). Let {7Tn} be a sequence of partitionings of [0,1].
7Tn : °= XbO) < ... < x~n) = 1. Let {Lnf} be the sequence of periodic cubic
spline interpo/ants associated with f and {7Tn}, so that Ln/(Xi) = /(Xi),
o~ i ~ n, and (Lnf)<il(O) = (Lnf)(j)(1),j = 0, 1,2.

A problem of some concern [4, 8] in the theory of spline approximation
is the determination of simple necessary and sufficient conditions on {7Tn} to
insure that {Lnf} converges uniformly toffor allfE C. Sharma and Meir [7]
proved that

if f1 == max h~n)/min h~n) < f3 for all n, (1)
nit i z.

then Lnf ->- funiformly for allfE C. Here and following h~n) = x~n) - xJ~i,

On = maxi h~n), and for ease of notation the superscript n will be deleted
if there is no danger of ambiguity. Nord [6] has shown the existence of
{7Tn} (necessarily) with unbounded mesh ratio f3n and a continuous functionf
such that Lnf~ f as On ->- 0. That f3n need not be bounded for Lnf ->- fto
hold was first observed by Cheney and Schurer [3]. Sharma and Meir [8]
proved that

if P == max h<n)/h<n) < V2
n II-il~I' )

for all n, (2)

then Lnf ->- f uniformly for all fE C. This condition was later [4] relaxed
by Cheney and Schurer to

Pn < 2 for all n sufficiently large. (3)

In [4], it was conjectured that (3) is also a necessary condition in order that
Lnf ->- f for allfE C. We observe that this conjecture is false since one can
construct a {7Tn} satisfying (1) but not (3). Of course, (3) does not imply (1)
either.
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The main purpose of this note is to establish a third sufficient condition,
not implying (1) or (3), which insures that Lnf ---+ ffor aBfE C (Theorem 1).
In addition, the convergence of nonperiodic cubic spline interpolants to
functionsfE qo, 1] is established under similar conditions on {7Tn }.

2. CONVERGENCE THEOREM

Define (for a fixed 7T,,)

Qn == max qnU)·,

We now state and prove the main result.

I ~ i ~ n, (4)

(5)

THEOREM 1. If Pn < P and Qn ~ Q < 2 then for eachfE C

Ilf - Lnflloo ~ [3p2 + 2(P + 1)(2 - Q)/2(2 - Q)(P + 1)] w(f; on), (6)

where w(f; on) is the modulus of continuity of f Consequently, L"f ---+ f
uniformly as On ---+ 0.

Remark. There exists {7Tn} satisfying the above conditions but such that
Pn > 2 and f3n is unbounded. For example, consider {7Tn} such that for n
even, n = 2m,

hm = hm +1 = On

hm - I = hm+2 = 1/3 On

hm - 2 = hm+3 = 1/3 On

hm - 3 = hmH = 1/32 On

hm - 4 = hm +s = 1/32 On

where k = l(m - 1)/2
m/2

if m odd
if m even.

(7)

For n odd, let n + 1 = 2m, ignore h"+1 in the last line of (7). For example,
n = 11 yields hI = 0/27, h2 = h3 = hlO = hll = 0/9, h4 = hs = hs =
h9 = 0/3, and h6 = h7 = °= 27/103. Clearly, Pn = 3 and f3n is unbounded
as n ---+ 00, but one can easily verify that the conditions in Theorem 1 are
satisfied with Q = 11/6.
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Proof of Theorem 1. Let H2([0, 1], 1Tn) be the subspace of U[O, 1]
consisting of functions which are cubic polynomials in each subinterval of
1Tn , i.e., H2([0, 1], 1Tn) is the smooth Hermite space or order 2, [2]. Write

(8)

where Vnf is the unique element of the smooth Hermite space H2([O, 1], 1Tn),
such that Vnf(Xi) = f(Xi) and (Vnf)'(Xi) = 0 for °~ i ~ n. The following
two lemmas bound the terms on the right side of (8).

LEMMA 1. fE C implies II Vnf - fll", ~ w(f; on)'

Proof Using the notation of [5], for Xi-l ~ x ~ Xi

Vnf(X) = h-lHl(i) +hH2(i)

= f(x) + (h-l - f(x)) H 1(i) + (h - f(x)) H2(i),

since (HI + H2)(i) = 1 for all x. Lemma 1 follows immediately since
(I HI I + I H 2 I)(i) = 1 also.

LEMMA 2. fE C implies II Lnf - Vnfll", ::(; [3p2/2(2 - Q)(P + 1)] w(f; on)'

Proof Note that Lnf and Vnf are both elements of H2([0, 1], 1Tn) and as
in [5, Eq. (11)] we have for Xi-l ~ x ~ Xi

II Lnf - Vnfll", ~ Ki II{I H 3(i) I + IHii)I}II", ~ hiKi/4, (9)

where Ki = max{Lnf'(xi-l), Lnf'(Xi)}'

Remark. Equation (11) in Ref. 5 contains a misprint. The term in braces
should be written as in (9). The bound L1/4 given in [5] is for this latter
quantity.

We now seek a bound on Ki for each i. Let X and f be n x 1 vectors with

Let

M=

0 .. · °
then we must have from [1, Eq. (2.1.17)]

MX=f.

o
.. hn- 1

hI 2(hn + hI)

(10)
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Define D = diag{2(hl + h2), ••• , 2(hn + hI)}' Then (10) IS equivalent to

(MD-I)(DX) = f. (10')

The matrix MD-I = I + B, where II B ILx> ~ Q/2 < 1, and by [9, p. 61] it
follows that 11(1 + B)-I Ii", ~ 2/(2 - Q). Hence

II DX II", ~ 12Pw(f; on)/(2 - Q).

Therefore, j(Lnl)'(xi)1 ~ 6Pw(f; 0n)/[(2 - Q)(hi + hi+l)] and from (9),
Lemma 2 follows immediately. I The bound in (6) then follows from the
triangle inequality and the proof of Theorem 1 is complete.

The proof of Theorem 1 is easily modified to establish the following
theorem.

THEOREM 2. Let Snlbe the unique cubic spline interpolant 01a (continuous,
not necessarily periodic) lunction IE qo, 1] such that Snl(xi) = I(xi),
o~ i ~ nand (Snf)'(O) = (Snf)'(1) = o. If Pn < P and Qn ~ Q < 2
then

III - Sn/ll", ~ [3p2 + 2(P + 1)(2 - Q)/2(2 - Q)(P + 1)] w(f; on)'

Consequently, Snl -+ I uniformly as On -+ O.

If the class qo, 1] or C is restricted to LipN 1 =0= {II w(f, 0) ~ No}, then
we have the following theorem.

THEOREM 3. lilE LipN 1 then independent 01 the mesh {7Tn}

II Snl - Iii", ~ 5/2 NOn'

and ifI is periodic, i.e·,/(O) = 1(1) then

II Lnl - III", ~ 5/2 NOn'

(11)

(12)

Consequently, Snl -+ I and Lnl -+ I uniformly as On -+ O.

Proof The proof of Theorem 1 need only be modified as follows. From
Eq. (10) we have

D-lMX = D-If,

and hence

II X II", ~ II (D-IM)-I II", . II D-Ijll", ~ 3 [ w(~.hi) -l-- w(f; hi+l)] :0:::: 6N
, ' hi+1 --0:: •

The remainder of the proof parallels the proof of Theorem 1 and is omitted.

1 The author is indebted to the referee for the observation that h;/(hi + hi+!) <:: P/(P + 1)
which improves the bound of 1 in the original manuscript.
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Remark. If {7Tn} satisfies (2) or (3) then {7Tn} satisfies the hypothesis of
Theorems I and 2. We need only note that I/Pn :s:; hdhi-1 , hi-1/hi :s:; Pn and

qn(i) = hdhi+1[1 + (hi+2/hi+l)] + hi+1/hi[1 + (hi-1/hi)]

< 1/(1 + I/Pn)[(hi/hi+l) + (hi+1/hi)]

< Pn/(1 + Pn)[I/Pn + Pn] = (Pn2+ I)/(Pn + I),

which is less than 2 for Pn < 1 + V2 and is maximized on [l, P] at P. The
author is indebted to Professor M. Marsden for this bound on qn(i) which
improves the estimate qn(i) < Pn given in the original manuscript. From
(6), with Q = (P2 + I)/(P + I), we have the following theorem.

THEOREM 4. If Pn :s:; P < I + V2for all n, then for eachfE C,

Ilf - Lnflloo :s:; (P2 + 4P + 2)/2(-P2 + 2P + I) w(f; on).

This improves somewhat the bounds given in [4] or [8] for a given P < 2
and extends the admissible interval for P to [I, I + V2).
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